Chapter 2

INVERSE TRIGONOMETRIC
FUNCTIONS

+» Mathematics, in general, is fundamentally the science of
self-evident things. — FELIX KLEIN <

2.1 Introduction

In Chapter 1, we have studied that theinverse of afunction
f, denoted by f 2, existsif f is one-one and onto. There are
many functions which are not one-one, onto or both and
hence we can not talk of their inverses. In Class X1, we
studied that trigonometric functions are not one-one and
onto over their natural domains and ranges and hencetheir
inverses do not exist. In this chapter, we shall study about
the restrictions on domains and ranges of trigonometric
functionswhich ensure the existence of their inversesand
observetheir behaviour through graphical representations.
Besides, someelementary propertieswill also bediscussed.
Theinversetrigonometric functions play animportant AryaBhatta
role in calculus for they serve to define many integrals. (476-550A.D.)
The conceptsof inversetrigonometric functionsisal so used in science and engineering.

2.2 Basic Concepts

In Class XI, we have studied trigonometric functions, which are defined as follows:
sinefunction, i.e, sine: R — [-1, 1]
cosinefunction, i.e, cos: R — [-1, 1]
tangent function, i.e, tan: R —{ x: x=(2n+ 1) g ne Z} >R

cotangent function, i.e, cot: R—{ x:x=nm,ne Z} - R

secant function, i.e,, sec: R—{ x:x=(2n+1) g,ne Z} ->R-(-1,1)

cosecant function, i.e.,cosec: R—{ x:x=nm, ne Z} > R-(-1,1)
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We have also learnt in Chapter 1 that if f: X—Y such that f(x) =y isone-one and
onto, then we can define aunique function g : Y —X such that g(y) = x, wherex e X
andy =f(x), y € Y. Here, the domain of g = range of f and the range of g = domain
of f. The function g is called the inverse of f and is denoted by f-. Further, g isaso
one-one and onto and inverse of g isf. Thus, g7 = (f 1)?*=f. We aso have

(frof)()=F"(F()=f"y)=x
and (fofH(=Ff(F"y) =f(=y
Since the domain of sine function is the set of all real numbers and range is the

closed interval [-1, 1]. If werestrict its domain to {_—; , g} , then it becomes one-one

and onto with range [— 1, 1]. Actually, sine function restricted to any of the intervals

i,_— JE I, [EE} etc., is one-one and its range is [-1, 1]. We can,
2 2 2 2 2 2

therefore, define the inverse of sine function in each of these intervals. We denote the
inverse of sine function by sin* (arc sine function). Thus, sin™* is a function whose

domainis[— 1, 1] and range could be any of the intervals [_—zn _—271 , [_—Zn g} or

[g%} , and so on. Corresponding to each such interval, we get a branch of the

function sint. The branch with range [gg is called the principal value branch,
whereas other intervals as range give different branches of sin™t. When we refer
to the function sin, we take it as the function whose domain is [-1, 1] and rangeis
{_—R,E}.Wewrite sint:[-1,1] — {_—nz}
2 2 2 2
From the definition of the inverse functions, it follows that sin (sin x) = x

T Y
if —1<x<1landsin?(sinx)=xif _ESXSE' In other words, if y = sin? x, then
sny=x.
Remarks

() Weknow from Chapter 1, that if y =f(x) isaninvertible function, then x=f-(y).
Thus, the graph of sin* function can be obtained from the graph of origina
function by interchanging x and y axes, i.e., if (a, b) is apoint on the graph of
sinefunction, then (b, a) becomesthe corresponding point on the graph of inverse
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of sinefunction. Thus, the graph of thefunctiony = sin* x can be obtained from
the graph of y = sin x by interchanging x and y axes. The graphs of y = sin x and
y=sintxareasgiveninFig 2.1 (i), (ii), (iii). The dark portion of the graph of
y = sim? x represent the principal value branch.

(i) It can be shown that the graph of an inverse function can be obtained from the
corresponding graph of original function asamirror image(i.e., reflection) along
the line y = x. This can be visualised by looking the graphs of y = sin x and

y =sin? x as given in the same axes (Fig 2.1 (iii)).
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Like sine function, the cosine function is afunction whose domain isthe set of all

real numbers and rangeisthe set [-1, 1]. If we restrict the domain of cosine function
to[0, ], then it becomes one-one and onto with range[—1, 1]. Actualy, cosinefunction
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restricted to any of theintervals[—m, O], [O,x], [, 2] etc., is bijective with range as
[-1, 1]. We can, therefore, define the inverse of cosine function in each of these
intervals. We denote the inverse of the cosine function by cos? (arc cosine function).

Thus, cos? is a function whose domain is [-1, 1] and range Y
could be any of the intervals [-r, O], [0, «t], [®, 2n] etc. \“
Corresponding to each such interval, we get a branch of the 5%
function cos™. The branch with range[0, ] iscalled the principal 21
value branch of the function cos™*. We write 3t
cos?: [-1, 1] — [0, m]. < nz
The graph of the function given by y = cos™ x can be drawn %
in the same way as discussed about the graph of y = sint x. The 5 1
graphsof y=cosxandy =cos*xaregiveninFig 2.2 (i) and (ii). R 10 >X
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Let us now discuss cosecx and secx as follows:

1
Since, cosec X = Snx’ the domain of the cosec functionistheset {x: xe R and

Xx#nm, ne Z} andtherangeistheset {y:ye R,y>1ory< -1} i.e, the set
R — (-1, 1). It meansthat y = cosec x assumes all real valuesexcept -1 <y<1landis
not defined for integral multiple of . If we restrict the domain of cosec function to

Y
[—E E} —{0}, thenitisonetooneand onto with itsrangeastheset R—(—1, 1). Actualy,

3n
cosec function restricted to any of the intervals [7 —} {-7, { } —-{0},

n 31
[2 2} —{m} etc., isbijective and itsrange is the set of all real numbers R — (-1, 1).
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Thus cosec can be defined as afunction whose domainisR — (-1, 1) and range could

be any of thelntervals[ } {0 [ = } {-n, [n 3;} —{n} etc. The

function corresponding to therange {7 —} {0} iscalled the principal value branch

of cosec™. We thus have principal branch as

cosec? : R — (11)—>[ }{}

The graphs of y = cosec x and y = cosec'x are given in Fig 2.3 (i), (ii).

y=cosec x
y = cosec x

Fig2.3 (i) Fig 2.3 (ii)

1 yis
Also, sincesecx = oox thedomainof y=secxistheset R —{x:x=(2n+1) o

ne Z} and rangeisthe set R — (-1, 1). It means that sec (secant function) assumes

all real values except —1 <y < 1 and is not defined for odd multiples of g If we

T
restrict thedomain of secant functionto[0, ] —{ 5 }, thenitisone-one and onto with
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its range as the set R — (=1, 1). Actually, secant function restricted to any of the

T

intervals [, 0] -{ =}, [0,] _{E

[, 2r] —{ 3775} etc., ishijectiveand itsrange

isR—{-1, 1}. Thus sec can be defined as afunction whose domainisR— (-1, 1) and

_ 3
range could be any of theintervals [, 0] —{ 7“}, [0, 7 —{ g}, [, 2n] —{ 7“} etc.

Corresponding to each of theseintervas, we get different branches of the function sec™.

The branch with range [0, ] — { g} is called the principal value branch of the

function sec®. We thus have

sect: R —(=1,1) — [0, 7] —{g}
The graphs of the functionsy = sec xand y = sec* x are given in Fig 2.4 (i), (ii).
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Finally, we now discuss tan and cot™

Fig 2.4 (ii)

We know that the domain of the tan function (tangent function) is the set

{x:xe Randx#(2n +1) g,ne Z} and therangeis R. It means that tan function

isnot defined for odd multiples of z . If werestrict the domain of tangent function to

2



INVERSE TRIGONOMETRIC FUNCTIONS 39

(_—;g j , then it is one-one and onto with its range as R. Actually, tangent function

) ) -3t -=n -T T n 3n o
restricted to any of thelntervals( > ) ( > '2)’ (2, > j etc., is bijective
and its range is R. Thus tan™ can be defined as a function whose domain is R and

. i I e B O (L
range could be any of theintervals > 5 2522 and so on. These
—T T
intervalsgivedifferent branches of thefunction tan™. Thebranch with range [7 > j
is called the principal value branch of the function tan.

We thus have
. T
tant: R — 5%
The graphs of the function y =tan x and y = tan"*x are given in Fig 2.5 (i), (ii).

y=tan'x

y=tanx

Fig2.5 (i) Fig 2.5 i)

We know that domain of the cot function (cotangent function) is the set
{x:xe Randx#nm,ne Z} and rangeisR. It means that cotangent function is not
defined for integral multiples of &. If we restrict the domain of cotangent function to
(O, ), then it is bijective with and itsrange as R. In fact, cotangent function restricted
to any of theintervas (-, 0), (O, ), (n, 2r) etc., isbijective and itsrangeis R. Thus
cot can be defined as a function whose domain is the R and range as any of the
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intervals (-, 0), (O, m), (w, 2r) etc. These intervals give different branches of the
function cot. The function with range (0, ) is called the principal value branch of
the function cot=. We thus have

cot?: R — (0, m)

The graphs of y = cot x and y = cot*x are given in Fig 2.6 (i), (ii).

y=cotx
Fig2.6(i) Fig 2.6 (ii)
The following table gives the inverse trigonometric function (principal value
branches) along with their domains and ranges.

st L1 o .
! 22|
cost : [1, 1] — [0, ]
cosec? :  R-(-11) — == {0
L 2 2]
sect R-(-1,1) - [0, 7] — {g}
tan= : R — (_—nzj
2 2
cot? : R — (O, m)
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1
1. sin™x should not be confused with (sinx)™2. In fact (sin X)*= —— and

_ . . . sinx
similarly for other trigonometric functions.
2. Whenever no branch of an inverse trigonometric functionsis mentioned, we
mean the principal value branch of that function.
3. The value of an inverse trigonometric functions which lies in the range of
principal branch is called the principal value of that inverse trigonometric
functions.

We now consider some examples:
1
Example 1 Find the principal value of sin™ (ﬁj .

1 1
Solution Letsin? | —= |=vy. Then, sny = —.
(ﬁj Y =2

Nla

)

—T
We know that the range of the principal value branch of sin is (?

1 1
() - _— T
sn(dj NS Therefore, principal value of sin- (_\/Ej is 4
Example 2 Find the principal value of cot™ (_T;j

-1
Solution Let cot™ (ﬁj =y. Then,

-1 P T 2nj
=2 () = ex(s-2) - (2

We know that the range of principal value branch of cot™ is (0, n) and

cot (EJ— — . Hence, principal value of cot* [;1} is 2n
3 - \/é . ) p p \/é 3
|EXERCISE 2.1
Find the principal valuesof thefollowing:
, 1 V3
1. sint 5 2. cost B 3. cosec? (2)

4. tant (—/3) 5. cos® (-%) 6. tan? (-1)
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S [%} 8. cot? (+/3) 9. cos™ (_%J

10. cosec? (—/2)
Find thevaluesof thefollowing:

11. tan(1) + cos? 1 +sint 1 12. cos? 1 +2sint 1
2 2 2 2
13. Ifsintx =Yy, then
T I
<y< _Teoy<t
(A) 0<y<m (B) 5 y 5
T T
(C) O<y<m (D) 5 y 5
14. tant \/3-sec(-2) isequal to
i yis 2n
A B) —— C) — D) —
(A) © (B) 3 © 3 (D) 3

2.3 Propertiesof InverseTrigonometric Functions

In this section, we shall prove some important properties of inverse trigonometric
functions. It may be mentioned here that these results are valid within the principal
value branches of the corresponding inverse trigonometric functions and wherever
they aredefined. Someresults may not bevalid for all values of the domainsof inverse
trigonometric functions. In fact, they will be valid only for some values of x for which
inverse trigonometric functions are defined. We will not go into the details of these
values of x in the domain as this discussion goes beyond the scope of this text book.

Let usrecall that if y=sin™x, thenx=sinyand if x=siny, theny = sin”’x. Thisis
equivaentto

T T
sn(sin*x)=x xe [-1, 1] andsin? (sinX) =X, X € [_E E}
Sameistruefor other fiveinverse trigonometric functions aswell. We now prove
some properties of inverse trigonometric functions.

1
1. (i) sin™? N cosecix, x2lor x<-1

1
(i) cosl;zseclx,leorXS—l
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1
(i) tan? Me cottx, x>0

To prove the first result, we put cosec! x =y, i.e., X = COSec y

1
Therefore X siny

) 1
Hence snt—=y
X
) 1
or sint X = cosec™? x

Similarly, we can prove the other parts.
2. () dgnt(x)= —dgn?tx, xe [-1, 1]
(i) tant (x)=—tan'x,xe R
(i) cosec (X) = —cosect X, x| 21
Letsin?(—x) =y, i.e, x=sinysothat x=-siny,i.e, x=sn (-y).
Hence sntx=—-y=-sn?! ()
Therefore  sin? (—x) = —sin™x
Similarly, we can prove the other parts.
3. (i) cos?(x) =m—cos'x, x € [-1, 1]
(i) sect (x) =m —sectx, [x|21
(iii) cot?* (x) =m —cot?x, x € R
Let cos? (—x) =yi.e, —Xx=cosy sothat x=—cosy = cos (t —Y)
Therefore costx=m—-y=mn—cos? (—X)
Hence cos?t (X) = — cos? x
Similarly, we can prove the other parts.

4. (i) sin—1x+cos1x=g,xe -1, 1]

(i) tantx + cotx = g,xe R

(i) cosec?x + sec?x = g x| 21
. . Tc
Let sintx=y. Thenx=siny = cos [E—YJ

Therefore cost x = g—y = g—sin‘lx
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. T
Hence sint x + cos?t x = 5
Similarly, we can prove the other parts.

ty

5. (i) tanx + tanty = tan? X Xy <1
(i) tanix —tanty =tan? 2 xy>-_1
1+ xy

Lettanr*x=0andtan?y=¢. Thenx =tan 6, y = tan ¢
tanO+tang  X+y

tan(6+¢) = =
Now O )= anetane  1oxy
o X+Yy
Thisgives 0+0= tan—ll_xy
1 1 1 X+y
Hence tan™ x + tan™ y = tan 1y

Inthe aboveresult, if wereplacey by —y, we get the second result and by replacing
y by x, we get the third result as given below.

6. (i) 2tan x = sint % x| <1

(i) 2tan x = cos? =X y>0
1+ x?

(iii) 2tan1x:tan112X2,—1<x<1
—X

Let tan™ x =y, then X = tan y. Now
2% _ 2tany
1@ -9 1 tan? y
=gn?(sin2y) = 2y = 2tan? x

sin™t
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1- X2 1-tan’y
Also cos? 1oyl = cos? m = cos™? (cos 2y) = 2y = 2tan™ x

(iii) Canbeworked out similarly.
We now consider some examples.

Example 3 Show that

1 1
. . _ L <<y <
() snt (2x/1-x2) =2sin?x, %57

i Ta ! 1 i<x<1
(i) sin (2x 1_X2)—Zcosr X’\/E_ =
Solution

(i) Letx=sn0O. Thensin?x=6.We have

s (oxy1-x2) =sin* (2sin6v1-sin?0)
=sin?!(2sin cosH) = sint(sin20) = 20
=2sn'x

(i) Takex=cos 6, then proceeding as above, we get, S (ZXﬁ /11— x? )= 2 costx

Example 4 Show that tan —+tan == tan™>
P 2 11 4
Solution By property 5 (i), we have
1 2
211 13
LHS = tant Lrtant 2 _gnt2 11 211 —tan 2 - tan SRS
2 11 .12 20 4
2 11
COS X T

Example 5 Express tan * , ——< x<37n in the simplest form.

1 sinx 2
Solution We write

an” 2x X
cos? X +sin? X _2¢in X cos®
2 2 2 2

X
) cosz——smz—

- COSX
1-sinx

45
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= tan

= tan

= tan

Alternatively,

tan | —oX_ |  tan
1-sinx

tan

Example 6 Write cot™ L

-1

-1

-1

LN

-1

-1

-1

X . X X . X
cos—+sin= || cos=—sin—
2 2 2 2
X . X)2
cos- —sin—
2 2

X . X X
COS—+Sin— 1+tan—
2 2| _ tan™t 2
X . X X
cos——-Sin— 1-tan—
2 2 2

—

(i3] 5

] |x| > 1in the simplest form.

Solution Let x = sec 0, then \/x? —1= 'sec20—1=tan®
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Therefore, cot™ = cot (cot 8) = 6 = sec x, which is the simplest form.

1
VX -1

a4 2X 3x- x>
Example 7 Prove that tan™ x + tan 11—2=tan‘l( N zJ, |x|<

Solution Let X = tan 6. Then 6 = tan? x. We have

3 a3
RH.S. = tant | FX |t BtEn0=ten’e
1-3x 1-3tan“0

=tan™ (tan30) = 30 = 3tan*x = tan? x + 2 tan? x

=tan? x + tan? = L.H.S. (Why?)

1-x?
Example 8 Find the value of cos (sec? x + cosec? x), |x| = 1

Solution We have cos (sec? x + cosec™ x) = cos (gjz 0

| EXERCISE 2.2|

Provethefollowing:

11
1. 3sintx=sin? (3x —4x%), Xe[—? E}

2. 3cost x = cos? (E—3X), Xe E l}

> .7 1
Gt stan
3 tarigy 24 2
1 1 31
4 2tan'= tan'= tan '=
2 7 17

Writethefollowing functionsin the simplest form:

DRV |
1

tan " ——
5. , X#0 6. Vx> 1
tan < /X2 1 ||

_ 1-cosx COSX—SinX
7. tan™ X< T 8. tan!| ———— |, 0<x<m
1+ cosx COSX+SINX
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0. tant

—— . Ix|
——,|x|<a
JaZ-x?
3a?x-x° —a a

tan—l - n ~ L — < XL —
10. [a3—3ax2j’a>o’ 3
Find the values of each of the following:

.41

11. tan‘{Zcos[Zs n‘lzﬂ 12. cot (tana + cot?a)

2

1] . 4 2X 41—y
13. tanE sin 7 T00S ——— | |x|<l,y>0andxy<1

1+ X 1+y?

41
14. If sin (Sn 1§+COS 1XJ=1, then find the value of x

4 x-1 axX+1l = .
15. If tan " ——=+tan " ——==— then find the value of x
X—2 X+2 4
Find the values of each of the expressionsin Exercises 16 to 18.
o .2
16. sml(sm—nj 17. tan‘l[tan%j
3 4

. 3 3
tan| sintZ+cott=
o faniZecd

19 cos* (cos%j isequal to

Ay TE B >~ o D) X
(A) 5 (B) 5 © 3 (D) 6
20. sin[g—sinl(—%)j isequal to
1 1
(A) 5 B) 3 © (D) 1

21. tant/3-cot™(—/3) isequal to

(A) = ® 5  (©0 (D) 23
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Miscellaneous Examples

i . 4, 3W
Example 9 Find the value of Sin (Smg)

] . q,. . 3m, 3m
Solution We know that sin‘l(sinx):x. Therefore, SIn (Smg)zg
3n b L . .
But ge {_E E} whichisthe principal branch of sin x
271 21 T T
sn(=)=sn(n——)=sin— —e|l-=,—
However ( ) ( ) z and z e[ > 2}
g, 3m g, 2mW, 2®
sn~(sin—=)=sin " (sn=")=—
Therefore ( 5) ( 5) c
E e 10 Show that sin *> sn 2 cos 134
xample ow 5 7 a5

Solution Let sin‘1§=x and sin 18 y
5 17
Therefore smx_g and siny E

Now V1 sin?x / (Why?)
cos V1 sin?
2y Y Yoyl 289 17

We have COS (X—Yy) = COSX COSy + sSinxsiny

415 3 8 84

“5 17 5 17 85

84
Theref X cos ! =
erefore y o

: 3 . 8 84
Hence sn!'> sn!'= cos!l=—

5 17 85
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Example 11 Show that sin 112 o512 tant 83 n
13 5 16
Solution Let sinfllz_x cos’lf_y, an S,
13 5 16
Then sinx:B, cosy:f, tanz=§
13 5 16
Theref cosx—E siny—§ tanx—E andtany—§
erefore 13 =’ 5 7
12+3
tanx+tany 5 4 63
tan(x+y)=—"— =—5—5 =——
We have ( y) l—tanxtany 1_L2X§ 16
Hence tan(x y) tanz
i.e, tan(x +y) =tan (—2) ortan (x +y) =tan (m — 2)
Therefore X+y=—z o X+y=n—-2z
Since X, y and z are positive, X + y # —z (Why?)
H +y+z= a2 cost et 8B,
ence X+y+z=m or 13 5 16

acosx—bsin x} _

a
. . tan—l “ > _
Example 12 Simplify [bcosx+asinx Jf —tanx>-1

b

Solution We have,

acosx—bsinx

; — ——tanx
1| acosx—bsinx _
tan | S22 20N | gt bcosx | _ g
bcosx+asinx bcosx+asinx a
" boosx L tanx

tan‘lg —tan (tan x) = tan‘lg —X
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Example 13 Solve tan™ 2x + tan™ 3x = %
Solution We have tan™ 2x + tan™ 3x = %
. i 23 ) _n
1-2xx3x 4
_ 5x Y
i tan 1 = —
(2s)-1
Theref X =t
erefore 162 -~ i
or 6x*+5x—1=0i.e,(6x—1) (x+1) =0
1
which gives X = s orx=-—1

Since x = — 1 does not satisfy the equation, asthe L.H.S. of the equation becomes

1
negative, X=6 isthe only solution of the given equation.

Miscellaneous Exercise on Chapter 2

Find the value of thefollowing:

1 cos™t (cos@j 2 tan‘l(tanﬁj
6 6
Prove that

3. Zsin‘lgztan‘1ﬁ 4. sin‘l§+sin‘l§:tan‘12
5 7 17 5 36
44 412 4133 412 . 43 . 456
5. COSt—+C0S == =cos == 6. cost=+snti=gnt=
5 13 65 13 5 65

7. Ren 225 _ sin> o5t

16 13 5

8. tan‘lEJr tan’ll + tan’ll + tan’11 _I
5 7 3 8 4
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Prove that

9. tanx %cos‘1 l—i ,xe [0,1]

10. cot™ \/l+sinx+\/1—sinx X XE(O,
Jl+sinx—+/1-sinx ) 2

)
11. tan™ (x/lJr_x—\/l__X

1 1 .
—]—n —=cosTtx, ——=<x<1 [Hint: Put x = cos 26]

Arx+V1-x) 4 2 J2

N

1o 958l 9202
8 4 3 4 3
Solvethefollowing equations:
41 x 1, 4
13. 2tan (cos x) = tan (2 cosec x) 14. tan r & Etan X,(x 0)

15. sin(tan?x), |[x| < lisequal to

X 1 1 X
) V1- %2 ®) 1-x? © 1+ X2 (®) 1+ X2

16. St (1—x)—2sinix= g,thenxisequal to

AO1 Bll C) O D1
(A) 0,5 ® 1, © ©)

1 X g X-Yy
tan™| = |—tan™ i
17. [yj X+y isequal to

T T
A 3 ®3 ©5 O
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Summary

€ Thedomains and ranges (principal value branches) of inverse trigonometric
functionsaregiveninthefollowing table:

Functions Domain Range
(Principal Value Branches)
o =
y=sintx [-1, 1] 22
y = cos? x [-1, 1] [0, ]
p—
= cosec? x R-(-11 —,—|—={0
y (-1.1) 22 {0}
e
y = sect x R-(-1,1) [0, 7] — {E}
— tard )
y = tan? x R >
y = cot? x R (0, m)

1
@ sinx should not be confused with (sinx)=. In fact (sin x)* = Snx and
similarly for other trigonometric functions.
€ The vaue of an inverse trigonometric functions which lies in its principal
value branch is called the principal value of that inverse trigonometric
functions.

For suitable values of domain, we have

¢ y=snlx=x=dgny ¢ x=siny > y=s8ntx
¢ gin(sintx) =x ¢ sint(sinx) =x

1
¢ sint X = cosectx ¢ cost(—x) = m — costx
€ cos? X = secx ¢ cot! (Xx) =m —cot'x

1
2 tan—1;=cot—1x ¢ sec! (X)) =m—sectx
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¢ snt(x)= —sn'x ¢ tan? (%) = —tant x
T
¢ tanlx +cotlx = P & cosec? (%) = — cosec? x
. T T
2 sm—lx+coslx=5 * cose(rlx+$c1x=§
‘ 1. 1y 1 X y ‘ 2 1. 1 2X
tanix + tanly = tan- tanix = tan
y 1 xy 1 x2
Xy
¢ tanx —tanly = tan? 1
_ 2X 1 %
¢ 2Ztan'x=sgn? 1 - cos* 1 2

Historical Note

The study of trigonometry was first started in India. The ancient Indian
Mathematicians, Aryabhatta (476A.D.), Brahmagupta (598 A.D.), Bhaskara |
(600A.D.) and Bhaskarall (1114 A.D.) got important results of trigonometry. All
this knowledge went from India to Arabia and then from there to Europe. The
Greeks had also started the study of trigonometry but their approach was so
clumsy that when the Indian approach became known, it wasimmediately adopted
throughout theworld.

In India, the predecessor of the modern trigonometric functions, known as
the sine of an angle, and the introduction of the sine function represents one of
the main contribution of the siddhantas (Sanskrit astronomical works) to
mathematics.

Bhaskaral (about 600A.D.) gaveformulaeto find thevalues of sinefunctions
for angles more than 90°. A sixteenth century Malayalam work Yuktibhasa
contains a proof for the expansion of sin (A + B). Exact expression for sines or
cosines of 18°, 36°, 54°, 72°, etc., were given by Bhaskaralll.

Thesymbolssin x, cos? x, etc., for arc sinx, arc cosx, etc., were suggested
by the astronomer Sir John F.W. Hersehel (1813) The name of Thales
(about 600 B.C.) isinvariably associated with height and distance problems. He
is credited with the determination of the height of a great pyramid in Egypt by
measuring shadows of the pyramid and an auxiliary staff (or gnomon) of known
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height, and comparing theratios:

E_E =t 'saltitud
s an (sun’s atitude)

Thalesis also said to have calculated the distance of a ship at sea through
the proportionality of sides of similar triangles. Problems on height and distance

using the similarity property are also found in ancient Indian works.



